QUIZ 1 SOLUTIONS: LESSON R AUGUST 22, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

1. $[2 \mathrm{pts}]$ Evaluate $\int_{0}^{2} e^{x} d x$.

Solution:

$$
\begin{aligned}
\int_{0}^{2} e^{x} d x & =\left.e^{x}\right|_{0} ^{2} \\
& =e^{2}-\underbrace{e^{0}}_{1} \\
& =e^{2}-1
\end{aligned}
$$

2. $[4 \mathrm{pts}]$ Evaluate $\int_{-1}^{1} \frac{3}{4} x^{3} d x$.

Solution:

$$
\begin{aligned}
\int_{-1}^{1} \frac{3}{4} x^{3} d x & =\left.\frac{3}{4}\left(\frac{1}{3+1}\right) x^{3+1}\right|_{-1} ^{1} \\
& =\left.\frac{3}{4}\left(\frac{1}{4}\right) x^{4}\right|_{-1} ^{1} \\
& =\left.\frac{3}{16} x^{4}\right|_{-1} ^{1} \\
& =\frac{3}{16}\left[(1)^{4}-(-1)^{4}\right] \\
& =\frac{3}{16}[1-1] \\
& =0
\end{aligned}
$$

3. [4 pts] Evaluate $\int \sec x(\tan x+\sec x) d x$.

Solution: First, recall that

$$
\int \sec x \tan x d x=\sec x+C \quad \text { and } \quad \int \sec ^{2} x d x=\tan x+C
$$

Second, write

$$
\begin{aligned}
\int \sec x(\tan x+\sec x) d x & =\int\left(\sec x \tan x+\sec ^{2} x\right) d x \\
& =\int \sec x \tan x d x+\int \sec ^{2} x d x \\
& =\sec x+\tan x+C
\end{aligned}
$$

